Multi-maser measurements physical conditions and astrophysical properties

Anita Richards, UK ARC, Manchester thanks to Malcolm Gray and many collaborators

- Evolved stars: mass loss
 - How; what survives
- Water around evolved stars
 - Scales from μas to tens mas
 - Morphology, kinematics
- Multiple transitions constrain physical conditions
- High precision measurements of molecular gas properties

EUROPEAN ARC

ALMA Regional Centre || UK

Evolved stars

Asymptotic Giant Branch (Miras etc.) & Red Supergiant stars

- *T*_{eff} 2500-3500K
 *R*_{*} 0.5 5 au
- Pulsation P ~yr
- Mass loss rate
- $10^{-8} 10^{-4} M_{\odot}/yr$
- Enriched in dust and molecules

What don't we know?

- How is mass lost from the stellar surface?
 - Pulsation? Convection cells?
 - Peturbations \sim 0.1 R $_{*}$ optical and radio

- Betelgeuse; similar hot/cold spots also seen in other RSG and Mira (*Vlemmings*+'15)
 - Low-filling-factor chromosphere
 - Harper & Brown 2006

What don't we know?

- How are winds driven?
 - Radiation pressure on dust, once it has formed
 - Simple model needs help
 - Large grains? Scattering?
 - Models: Hoffner, Bladh; Observations: Norris
- Spherical, solitary stars produce asymmetric PNe/SNR
 - Unseen companions/planetary remnants?
 - No surface rotation on AGB/RSG
 - Spinning core?
 - Magnetic field?
 - Zeeman splitting (masers, stellar lines)
 - Stellar-centred field but Dipole? Solar-type? Toroidal?

Inside r_d: SiO ballistic? Magnetic driving?

1240

1220

(pixels) 1500

760

Cam

- R Cas shows central redshifted emission Must be near-side infall
- TX Cam maser proper motions non-radial, follow polarization vectors
 - Dragged or dragging (Hartquist+96)?
- But ballistic trajectories fitted for IK Tau

Escape velocity reached in 22 GHz shell

Richards+'12; Bains+'03

What accelerates the wind?

- Water maser shell limits show gradual $V_{exp} \propto r$ — Relationship holds for AGB, RSG out to many 100s R_{\star}
- τ or momentum coupling changes?
 - Ivezic & Elitzur'10
- Dust absorption efficiency evolves?
 - Chapman & Cohen
 86; Verhoelst+
 - Also seen in other lines incl. Hershel
 - Decin + '10

Proper motions

- RT Vir ~133 pc (van Leeuwen'07)
- 6 MERLIN epochs over 10 weeks
 - 22 GHz proper motions consistent with Doppler velocity
 - Accelerating, radial expansion
 - No rotation (*Richards*+13; *Imai*+03)
- 22 GHz 15-au thick shell
 - Clouds at all distances brighten, then dim

960524

960429

96040

offset (mas)

offset (mas)

offset (mas)

960612

960515

960423

Water cloud measurements

- Component beamed size s
 - <1 to a few tens mas</p>
 - MERLIN data: fit & deconvolve 2D Gaussians
 - 1-2 km s⁻¹ series
 - Gaussian spectra

 $-\Delta V_{\rm c} \gtrsim \Delta V_{\rm th}$

- Measure lengths of series of components
 - Unbeamed cloud size
 - R_{cAGB} 1 2 AU
 - R_{cRSG} 10-15 AU
- Beaming angle $\sim (0.5 s/R_c)^2$

Shrinking of brighter masers

- Component size s
- Intensity I_{v}
- Brighter spots are smaller

Richards+11

Elitzur+92

 "Amplification-bounded" beaming from ~spherical clouds

But *sometimes* brighter=bigger

 Spectral peak components swell

- Shock 'into page'
 - Maser propagates perpendicular to shock
 - Pump photons escape
 orthogonally
 - Entire surface emission is amplified
 - "Matter bounded"

beaming

Apparent size
 ~ actual size

Fractal analysis

- How far does the stellar pulsational influence reach?
 - Why are SiO maser motions so disordered?
- Direct measurements of turbulence:
 - Line width fluctuations
 - Maser proper motions
- Fractal scales
 - Incompressible/ Kolmogorov within clumps
 - Shallower slope on larger scales suggests supersonic dissipation
- Need full range of scales
 - Strelniski+'02, Silant'ev+06, Gray'12

Water maser clumps scale with *size

- 22 GHz maser thick shell
 - $-r_{i} \sim 5 R_{*}; r_{o} \sim 50 R_{*}$
- $R_{\text{cloud}} \sim 1 R_{*} \text{ at } r \sim 10 R_{*}$
 - Assuming radial expansion, birth radius 5%–10% R_{*}
- Determined by stellar properties?
 - Dust cooling or other microphysics same scale for all stars
- Or scale set by instabilities in spherical geometry (*Gray in* prep.)

Water maser clumps scale with *size

- 22 GHz maser thick shell
 - $-r_{i} \sim 5 R_{*}; r_{o} \sim 50 R_{*}$
- $R_{\text{cloud}} \sim 1 R_{*} \text{ at } r \sim 10 R_{*}$
 - Assuming radial expansion, birth radius 5%–10% R_{*}
- Determined by stellar properties?
 - Dust cooling or other microphysics same scale for all stars
- Or scale set by instabilities in spherical geometry (*Gray in* prep.)

Maser location consistent with $E_{\rm U}$?

- SiO 43, 86 GHz
 *E*_U > 1800 K
 - _ < 4 R★
- H₂O 22GHz
 - _ *E*_U ∼650 K
 - 5-30 R_{*}
- OH 1612 MHz
 - $-E_{\rm U}$ tens K
 - >50 R★
- OH mainlines (1665-1667 MHz)
 - $-E_{\rm U} < 500 {\rm K}$
 - Intermediate locations

22 GHz H_2O and OH masers

- 22 GHz r_i set by quenching density ~5 10¹⁵ m⁻³ at 1000 K
- OH mainlines (global VLBI) interleave 22 GHz H₂O clouds
 - Need ~1/50 H_2O gas density, T<500 K
 - Seen for most RSG, about half AGB
- OH 1612 MHz further out where they belong

ALMA: first detailed sub-mm maser maps VY CMa

- ~20 antennas, \leq 2.7 km baselines
 - Resolution \sim 0".05 Band 9, \sim 0".1 Band 7
 - Covers 658, 325, 321 GHz masers
- Star at centre of maser expansion ...

'VY' – fainter than 'C'!

Contours: B7 continuum Symbols: 321 GHz masers

OGorman+'14 -Richards+'14 -

Sub-mm maser predictions

- Density *n*, radiation field, 140 *T*, dV, E_{U} , N_{H2O} determine 120 maser excitation \cong 100
- 22 GHz wide span

 Quenched at high n
 Fades <~400 K
- 325 GHz boundaries at lower densities

 Extends to cooler T
- 321 GHz narrower range
- 658 GHz hot, dense environment

Shocks?

- 658- and 321-GHz masers 1000 appear to curve round 'C' 800
 - Wind colliding with dense clump? 400
- Can shock heating explain 200 extended highexcitation 0 lines?

VY CMa sub-mm spatial distribution

• Average cloud properties

*sensitivity limited

 Roughly consistent with expansion in outflow

• Different lines not found within ~10 au at similar velocities _ Clump v. interclump different T, n, velocity gradient, N_{H2O} ?

Sub-mm maser predictions

- Density *n*, radiation field, 140 *T*, dV, E_U, N_{H2O} determine 120 maser excitation 22 GHz wide span
- 22 GHz wide span

 Quenched at high n
 - Fades <~400 K ✓</p>
- 325 GHz boundaries at lower densities
 - Extends to cooler T
- 321 GHz narrower range ✓
- 658 GHz hot, dense environment ✓?
 - Shocks or ? needed

mm (<100 GHz) maser predictions

- 68 GHz needs higher densities than 658 GHz
 - Similarly bright

3

2

1

3000

2000

1000

Menten &

Melnick '89

- Maser $\tau > 3x22GHz$
- extends to cooler gas
- 96 GHz v. hot, dense gas 500
 - Narrow line in VY CMa

wardward

LSR VELOCITY (km s⁻¹)

ν₂ 4₄₀→5₃₃

6₁₆→5₂₃

40

Նետերն

3 – 13 mm water (& other) masers

- 68 and 96 GHz lines sample dense conditions
 - 96 GHz confined to hot regions but is favoured by steeper velocity gradient (*Gray*+15)
 - Maybe reveal stellar ejection process? Pulsations?
 - 68 GHz could trace cooler shock-compressed gas
 - Similar to anomalously distant 658 GHz VY CMa maser?
- + 22 GHz, trace kinematics across dust formation zone
- Multi-species observations allow precise models of temperature, density, water abundance
- Likely to occur mainly $<5 R_{*}$
 - Zone radius 20 mas for AGB star at 250 pc
 - ALMA resolution ~100 mas in lowest bands

H_2O known/predicted masers <1 THz

18 - 118 GHz masers

VLBI on tens to thousand km scales

- Milli-arcsec resolution measures kinematics
 - Track motions and fluctuations on ~week timescales
 - Compare 22, 68, 96 GHz (+ other lines and SiO)
- Need tens-mas resolution to detect all the flux
 - Combine with mas resolution to resolve maser location in clumps, or interclump gas, or shocks..
 - Maser beaming characterises shocks
 - Fractal analysis
 - Are clouds internally ~incompressible, but with largescale motions like dissipative turbulence?
- Dust formation episodic how are masers affected?
 - ALMA will image dust and star
 - ALMA (& in VLBI) for higher ν masers
- Complement with single-dish variability monitoring

Multi-frequency, *multi-scale* VLBI

- Simultaneous/within $\sim 1 \text{ min multi-}v?$
 - Chose sources with bright 22 GHz &/or SiO masers
 - Transfer calibration to less well-known lines
 - V. good bandpass calibration essential
 - 0.1 km/s resolution (smear flux too much at >0.5km/s)
 - Use fringe finder/amp cal source, phase ref if pos.
- Single-frequency (within hours) capability?
 - Combine with ν -flexible array
 - &/or v. sensitive 'antenna' e.g. IRAM/phased ALMA
 - Allows use of faint but close phase-ref sources
 - Calibrate baselines to well-calibrated antennas
- Will be advantageous to calibrate shorter b'lines 1st
 - Help model bandpass calibrator (probably resolved)
 - Plus use short (100s-km) baselines for science!

Why astronomers need water

- We are wet (& mostly made in stars)!
- Stars are wet!
- Water masers reveal kinematics:
 - Dust formation zone (with SiO)
 - Nucleation to full-size
 - Acceleration zone
- Evolved star winds have simpler kinematics than YSO's!
 - Best laboratories to test 1st comprehensive water maser models
 - Gray, Sobolev, Nesternoek, Neufeld
 - Apply to SFR, active galaxies